Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

$\mathrm{KNi}_{\mathbf{3}}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{As}_{\mathbf{2}} \mathrm{O}_{7}\right)$

Ridha Ben Smail and Tahar Jouini*

Département de Chimie, Faculté des Sciences, 1060 Campus Universitaire, Tunis, Tunisia
Correspondence e-mail: tahar.jouini@fst.rnu.tn
Received 3 November 1999
Accepted 17 January 2000
The structure of the title compound, potassium trinickel arsenate diarsenate, is built up from corner- and edge-sharing NiO_{6} octahedra, AsO_{4} tetrahedra and $\mathrm{As}_{2} \mathrm{O}_{7}$ groups, giving rise to a polyhedral connectivity which produces large tunnels running along the crystallographic [010] direction. The K^{+} cations are located within these tunnels.

Comment

Until now, in the system $\mathrm{K}_{2} \mathrm{O}-\mathrm{NiO}-\mathrm{As}_{2} \mathrm{O}_{5}$, only the structure of $\mathrm{K}_{4} \mathrm{Ni}_{7}\left(\mathrm{AsO}_{4}\right)_{6}$ (Ben Smail et al., 1999) has been refined from single-crystal data. For KNiAsO_{4} (Buckley et al., 1988), the crystal structure has been determined by high-resolution neutron powder diffraction. In this paper, we present the synthesis and structural determination of the new potassium nickel arsenate $\mathrm{KNi}_{3}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)$ refined from singlecrystal data. The structure of this compound, viewed along the b axis, is shown in Fig. 1. It contains parallel tunnels running along the [010] direction wherein the K^{+}cations are located. The three-dimensional open anionic framework is made up of corner- and edge-sharing NiO_{6} octahedra, AsO_{4} tetrathedra and $\mathrm{As}_{2} \mathrm{O}_{7}$ groups. It can be described in terms of layers lying parallel to the (100) plane. These layers are connected to each other by corner sharing with the $\mathrm{As} 3 \mathrm{O}_{4}$ tetrahedron of the As $2 \mathrm{As}_{3} \mathrm{O}_{7}$ group and with the ${\mathrm{Ni} 3 \mathrm{O}_{6} \text { octahedron. In each }}^{2}$ layer, centrosymmetric pairs of $\mathrm{Ni}_{1} \mathrm{O}_{6},{\mathrm{Ni} 2 \mathrm{O}_{6}}$ and $\mathrm{Ni} 3 \mathrm{O}_{6}$ octahedra share six edges to constitute an $\mathrm{Ni}_{6} \mathrm{O}_{24}$ unit. Each unit is connected to its four adjacent neighbours by eight corners (Fig. 2). The cohesion between these units is reinforced by ${\mathrm{As} 1 \mathrm{O}_{4}}^{\text {tetrahedra and } \mathrm{As} 2 \mathrm{As}_{3} \mathrm{O}_{7} \text { groups. Each }}$ $\mathrm{As} 1 \mathrm{O}_{4}$ tetrahedron shares two edges, $\mathrm{O} 8-\mathrm{O} 11$ and $\mathrm{O} 10-\mathrm{O} 11$, with two adjacent NiO_{6} octahedra of one $\mathrm{Ni}_{6} \mathrm{O}_{24}$ unit and two corners, O 3 and O 10 , with two NiO_{6} octahedra of another unit. The diarsenate group shares five corners, $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 4, \mathrm{O} 6$ and O7, with three units of one layer and the sixth, O5, with one unit of another layer. The $\mathrm{As}_{2} \mathrm{O}_{7}$ group has no internal symmetry and a nearly eclipsed conformation, with O9 as the bridging oxygen. The As2-O9-As3 bridging angle is 120.4 (2) ${ }^{\circ}$. The average As-O bond distance is 1.649 (3) \AA. Both values agree with those generally observed for $\mathrm{As}_{2} \mathrm{O}_{7}$ groups (Effenberger \& Pertlik, 1993).

Figure 1 A projection of the $\mathrm{KNi}_{3}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)$ structure along the b axis.

The As-O bond lengths range from 1.640 (3) to 1.788 (3) A. These values compare well with those obtained for the two arsenate diarsenates reported previously, i.e. $\mathrm{Ag}_{5} \mathrm{Cu}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)$ (Effenberger \& Pertlik, 1993) and $\mathrm{Na}_{5} \mathrm{Bi}_{2}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)_{2}$ (Boughzala \& Jouini, 1998).

The three Ni atoms in the asymmetric unit exhibit a normal octahedral coordination, with average $\mathrm{Ni}-\mathrm{O}$ distances of 2.083 (3), 2.079 (3) and 2.086 (3) \AA for $\mathrm{Ni} 1, \mathrm{Ni} 2$ and Ni 3 , respectively. These values are in the same range as those found in $\mathrm{K}_{4} \mathrm{Ni}_{7}\left(\mathrm{AsO}_{4}\right)_{6}$ and KNiAsO_{4}.

The K^{+}ion is 11 -coordinated. The $\mathrm{K} \cdots \mathrm{O}$ distances range between 2.809 (4) and 3.105 (4) \AA, with a mean distance of 2.960 (4) \AA. We note here that the structure of the rubidium cadmium vanadate, $\mathrm{NaCd}_{3}\left(\mathrm{VO}_{4}\right)\left(\mathrm{V}_{2} \mathrm{O}_{7}\right)$ (Mertens \& MüllerBuschbaum, 1997), although analogous in composition, is fundamentally different in structure from the arsenate studied in the present work.

Figure 2
A perspective view of a portion of the structure of $\mathrm{KNi}_{3}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)$, showing the connections between the NiO_{6} octahedra, AsO_{4} tetrahedra and $\mathrm{As}_{2} \mathrm{O}_{7}$ groups.

inorganic compounds

Experimental

The title compound was prepared by the reaction of $\mathrm{NiO}, \mathrm{As}_{2} \mathrm{O}_{5}$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in the molar ratio 0.5:1:1. The mixture was ground in an agate mortar and heated at 673 K for 12 h . After grinding, the mixture was heated at 968 K for 6 h , followed by slow cooling at a rate of $10 \mathrm{~K} \mathrm{~h}^{-1}$ to 773 K and further cooling to room temperature at a rate of $100 \mathrm{~K} \mathrm{~h}^{-1}$.

Crystal data
$\mathrm{KNi}_{3}\left(\mathrm{AsO}_{4}\right)\left(\mathrm{As}_{2} \mathrm{O}_{7}\right)$
$D_{x}=4.727 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=615.99$
Monoclinic, $P 2_{1} / c$
$a=10.066$ (1) \AA
$b=9.681$ (2) \AA
$c=10.234$ (1) \AA
$\beta=119.780(1)^{\circ}$
$V=865.6(2) \mathrm{A}^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4 diffract-	$R_{\text {int }}=0.023$
\quad ometer	$\theta_{\max }=29.96^{\circ}$
$\omega / 2 \theta$ scans	$h=0 \rightarrow 14$
Absorption correction: ψ scan	$k=-13 \rightarrow 0$
\quad (North et al., 1968)	$l=-14 \rightarrow 12$
$\quad T_{\min }=0.217, T_{\max }=0.371$	2 standard reflections
2653 measured reflections	frequency: 120 min
2526 independent reflections	intensity decay: 0.6%

Refinement

```
Refinement on \(F^{2}\)
\(R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.032\)
\(w R\left(F^{2}\right)=0.059\)
\(S=1.144\)
2526 reflections
164 parameters
\(w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0225 P)^{2}\right.\)
    \(+1.2839 P]\)
    where \(P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3\)
```

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993);

Table 1
Selected geometric parameters (\AA).

Ni1-O3	2.025 (3)	$\mathrm{Ni} 3-\mathrm{O} 1^{\text {i }}$	2.101 (3)
$\mathrm{Ni} 1-\mathrm{O} 1^{\text {i }}$	2.033 (3)	$\mathrm{Ni} 3-\mathrm{O} 3$	2.112 (3)
Ni1-O6	2.064 (3)	$\mathrm{Ni} 3-\mathrm{O} 11$	2.118 (3)
Ni1-O10 ${ }^{\text {ii }}$	2.104 (3)	As1-O8	1.663 (3)
Ni1-O11 ${ }^{\text {i }}$	2.122 (3)	As1-O3 ${ }^{\text {iv }}$	1.669 (3)
Ni1-O7 ${ }^{\text {iii }}$	2.152 (3)	As1-O10	1.707 (3)
$\mathrm{Ni} 2-\mathrm{O}^{\text {iv }}$	2.000 (3)	As1-O11 ${ }^{\text {ix }}$	1.737 (3)
$\mathrm{Ni} 2-\mathrm{O}^{\mathrm{v}}$	2.026 (3)	As2-O4	1.640 (3)
Ni2-O10	2.028 (3)	As2-O1	1.680 (3)
$\mathrm{Ni} 2-\mathrm{O}^{\text {vi }}$	2.056 (3)	As $2-\mathrm{O}^{\text {iv }}$	1.713 (3)
Ni2-O11 ${ }^{\text {vii }}$	2.173 (3)	As2-O9 $9^{\text {viii }}$	1.741 (3)
$\mathrm{Ni} 2-\mathrm{O} 7^{\text {viii }}$	2.188 (3)	As3-O5 ${ }^{\text {iv }}$	1.643 (3)
Ni3-O4	2.045 (4)	As3-O2	1.654 (3)
$\mathrm{Ni} 3-\mathrm{O} 2^{\text {v }}$	2.054 (3)	As3-O6	1.694 (3)
Ni3-O5	2.085 (3)	As3-O9	1.788 (3)

Symmetry codes: (i) $x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $1+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iii) $1+x, y, z$; (iv) $1-x,-y, 1-z$; (v) $x, \frac{1}{2}-y, z-\frac{1}{2}$; (vi) $-x,-y, 1-z$; (vii) $x-1, \frac{1}{2}-y, z-\frac{1}{2}$; (viii) $x, y, z-1 ;$ (ix) $x-1, y, z$.
molecular graphics: DIAMOND (Brandenburg, 1997); software used to prepare material for publication: $\operatorname{SHELXL93}$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR1273). Services for accessing these data are described at the back of the journal.

References

Ben Smail, R., Driss, A. \& Jouini, T. (1999). Acta Cryst. C55, 284-286.
Boughzala, H. \& Jouini, T. (1998). Acta Cryst. C54, 1731-1733.
Brandenburg, K. (1997). DIAMOND. University of Bonn, Germany.
Buckley, A. M., Bramwell, S. T., Day, P. \& Harrison, W. T. A. (1988). Z. Naturforsch. Teil B, 43, 1053-1055.
Effenberger, H. \& Pertlik, F. (1993). Z. Kristallogr. 207, 223-236.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Mertens, B. \& Müller-Buschbaum, Hk. (1997). Z. Anorg. Allg. Chem. 623, 357361.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.

